
IES 302: Engineering Statistics 2011/2

HW Solution 1 — Due: February 1

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)

(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. (Set Theory)

(a) Three events are shown on the Venn diagram in the following figure:

28 CHAPTER 2 PROBABILITY

EXERCISES FOR SECTION 2-1

Provide a reasonable description of the sample space for each
of the random experiments in Exercises 2-1 to 2-17. There can
be more than one acceptable interpretation of each experiment.
Describe any assumptions you make.

2-1. Each of three machined parts is classified as either
above or below the target specification for the part.

2-2. Each of four transmitted bits is classified as either in
error or not in error.

2-3. In the final inspection of electronic power supplies, 
either units pass or three types of nonconformities might occur:
functional, minor, or cosmetic. Three units are inspected.

2-4. The number of hits (views) is recorded at a high-volume
Web site in a day.

2-5. Each of 24 Web sites is classified as containing or not
containing banner ads.

2-6. An ammeter that displays three digits is used to mea-
sure current in milliamperes.

2-7. A scale that displays two decimal places is used to
measure material feeds in a chemical plant in tons.

2-8. The following two questions appear on an employee
survey questionnaire. Each answer is chosen from the five-
point scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate
new ideas?

How often are my coworkers important in my overall job
performance?

2-9. The concentration of ozone to the nearest part per billion.

2-10. The time until a service transaction is requested of a
computer to the nearest millisecond.

2-11. The pH reading of a water sample to the nearest tenth
of a unit.

2-12. The voids in a ferrite slab are classified as small,
medium, or large. The number of voids in each category is
measured by an optical inspection of a sample.

2-13. The time of a chemical reaction is recorded to the
nearest millisecond.

2-14. An order for an automobile can specify either an
automatic or a standard transmission, either with or without
air-conditioning, and any one of the four colors red, blue, black,
or white. Describe the set of possible orders for this experiment.

2-15. A sampled injection-molded part could have been
produced in either one of two presses and in any one of the
eight cavities in each press.

2-16. An order for a computer system can specify memory
of 4, 8, or 12 gigabytes, and disk storage of 200, 300, or 400
gigabytes. Describe the set of possible orders.

2-17. Calls are repeatedly placed to a busy phone line until
a connection is achieved.

2-18. In a magnetic storage device, three attempts are made
to read data before an error recovery procedure that reposi-
tions the magnetic head is used. The error recovery procedure
attempts three repositionings before an “abort’’ message is
sent to the operator. Let

s denote the success of a read operation

f denote the failure of a read operation

F denote the failure of an error recovery procedure

S denote the success of an error recovery procedure

A denote an abort message sent to the operator.

Describe the sample space of this experiment with a tree
diagram.

2-19. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.
(a) (b) (c)
(d) (e)

2-20. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.
(a) (b)
(c) (d)
(e)

2-21. A digital scale is used that provides weights to the
nearest gram.
(a) What is the sample space for this experiment?

1A ¨ B2 ¿ ´ C
1B ´ C2 ¿1A ¨ B2 ´ C
1A ¨ B2 ´ 1A ¨ B¿ 2A¿

A B

C

1A ¨ B2 ¿ ´ C1B ´ C2 ¿
1A ¨ B2 ´ CA ¨ BA¿

A B

C
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Reproduce the figure and shade the region that corresponds to each of the following
events.

(i) Ac

(ii) A ∩B

(iii) (A ∩B) ∪ C

(iv) (B ∪ C)c

(v) (A ∩B)c ∪ C

[Montgomery and Runger, 2010, Q2-19]
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(b) Let Ω = {0, 1, 2, 3, 4, 5, 6, 7}, and put A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {5, 6}.
Find A ∪B, A ∩B, A ∩ C, Ac, and B \ A.

For this problem, only answers are needed; you don’t have to describe your solution.

Solution :

(a) See Figure 1.1

A B

C

A B

C

C

A B

C

A B

C

A B

C

(a) (b) (c)

(d) (e)

Figure 1.1: Venn diagrams for events in Problem 1

(b) A ∪B = {1, 2, 3, 4, 5, 6}, A ∩B = {3, 4}, A ∩ C = ∅, B \ A = {5, 6} = C.

Problem 2. (Classical Probability) There are three buttons which are painted red on one
side and white on the other. If we tosses the buttons into the air, calculate the probability
that all three come up the same color.

Remarks: A wrong way of thinking about this problem is to say that there are four ways
they can fall. All red showing, all white showing, two reds and a white or two whites and a
red. Hence, it seems that out of four possibilities, there are two favorable cases and hence
the probability is 1/2.

Solution : There are 8 possible outcomes. (The same number of outcomes as tossing
three coins.) Among these, only two outcomes will have all three buttons come up the same

color. So, the probability is 2/8 = 1/4 .
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Problem 3. (Classical Probability) A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text phrases.

(a) How many different designs are possible? [Montgomery and Runger, 2010, Q2-51]

(b) A specific design is randomly generated by the Web server when you visit the site. If
you visit the site five times, what is the probability that you will not see the same
design? [Montgomery and Runger, 2010, Q2-71]

Solution :

(a) By the multiplication rule, total number of possible designs

= 4× 3× 5× 3× 5 = 900 .

(b) From part (a), total number of possible designs is 900. The sample space is now the
set of all possible designs that may be seen on five visits. It contains (900)5 outcomes.
(This is ordered sampling with replacement.)

The number of outcomes in which all five visits are different can be obtained by realizing
that this is ordered sampling without replacement and hence there are (900)5 outcomes.
(Alternatively, On the first visit any one of 900 designs may be seen. On the second visit
there are 899 remaining designs. On the third visit there are 898 remaining designs.
On the fourth and fifth visits there are 897 and 896 remaining designs, respectively.
From the multiplication rule, the number of outcomes where all designs are different
is 900× 899× 898× 897× 896.)

Therefore, the probability that a design is not seen again is

(900)5

9005
≈ 0.9889.

Problem 4. (Combinatorics) Consider the design of a communication system in the
United States.

(a) How many three-digit phone prefixes that are used to represent a particular geographic
area (such as an area code) can be created from the digits 0 through 9?

(b) How many three-digit phone prefixes are possible in which no digit appears more than
once in each prefix?

(c) As in part (a), how many three-digit phone prefixes are possible that do not start with
0 or 1, but contain 0 or 1 as the middle digit?
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[Montgomery and Runger, 2010, Q2-45]

Solution :

(a) From the multiplication rule (or by realizing that this is ordered sampling with re-
placement), 103 = 1, 000 prefixes are possible

(b) This is ordered sampling without replacement. Therefore (10)3 = 10 × 9 × 8 = 720
prefixes are possible

(c) From the multiplication rule, 8× 2× 10 = 160 prefixes are possible.

Problem 5. (Classical Probability) A bin of 50 parts contains five that are defective. A
sample of two parts is selected at random, without replacement. Determine the probability
that both parts in the sample are defective. [Montgomery and Runger, 2010, Q2-49]

Solution : The number of ways to select two parts from 50 is
(

50
2

)
and the number of

ways to select two defective parts from the 5 defective ones is
(

5
2

)
Therefore the probability

is (
5
2

)(
50
2

) =
2

245
= 0.0082 .

Problem 6. (Classical Probability) We all know that the chance of a head (H) or tail
(T) coming down after a fair coin is tossed are fifty-fifty. If a fair coin is tossed ten times,
then intuition says that five heads are likely to turn up.

Calculate the probability of getting exactly five heads (and hence exactly five tails).

Solution : There are 210 possible outcomes for ten coin tosses. (For each toss, there is
two possibilities, H or T). Only

(
10
5

)
among these outcomes have exactly heads and five tails.

(Choose 5 positions from 10 position for H. Then, the rest of the positions are automatically
T.) The probability of have exactly 5 H and 5 T is(

10
5

)
210
≈ 0.246.

Note that five heads and five tails will turn up more frequently than any other single
combination (one head, nine tails for example) but the sum of all the other possibilities is
much greater than the single 5 H, 5 T combination.
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Problem 7. (Classical Probability) Shuffle a deck of cards and cut it into three piles.
What is the probability that (at least) a court card will turn up on top of one of the piles.

Hint: There are 12 court cards (four jacks, four queens and four kings) in the deck.

Solution : In [Lovell, 2006, p. 17–19], this problem is named “Three Lucky Piles”. When
somebody cuts three piles, they are, in effect, randomly picking three cards from the deck.
There are 52× 51× 50 possible outcomes. The number of outcomes that do not contain any
court card is 40× 39× 38. So, the probability of having at least one court card is

52× 51× 50− 40× 39× 38

52× 51× 50
≈ 0.553.

Problem 8. Binomial theorem : For any positive integer n, we know that

(x + y)n =
n∑

r=0

(
n

r

)
xryn−r. (1.1)

(a) What is the coefficient of x12y13 in the expansion of (x + y)25?

(b) What is the coefficient of x12y13 in the expansion of (2x− 3y)25?

(c) Use the binomial theorem (1.1) to evaluate
n∑

k=0

(−1)k
(
n
k

)
.

Solution :

(a)
(

25
12

)
= 5, 200, 300 .

(b)
(

25
12

)
212(−3)13 = − 25!

12!13!
212313 = −33959763545702400 .

(c) From (1.1), set x = −1 and y = 1, then we have
n∑

k=0

(−1)k
(
n
k

)
= (−1 + 1)n = 0 .

Problem 9. Each of the possible five outcomes of a random experiment is equally likely.
The sample space is {a, b, c, d, e}. Let A denote the event {a, b}, and let B denote the event
{c, d, e}. Determine the following:

(a) P (A)

(b) P (B)

1-5



IES 302 HW Solution 1 — Due: February 1 2011/2

(c) P (Ac)

(d) P (A ∪B)

(e) P (A ∩B)

[Montgomery and Runger, 2010, Q2-54]

Solution : Because the outcomes are equally likely, we can simply use classical proba-
bility.

(a) P (A) = |A|
|Ω| =

2

5

(b) P (B) = |B|
|Ω| =

3

5

(c) P (Ac) = |Ac|
|Ω| = 5−2

5
=

3

5

(d) P (A ∪B) = |{a,b,c,d,e}|
|Ω| = 5

5
= 1

(e) P (A ∩B) = |∅|
|Ω| = 0

Problem 10. If A, B, and C are disjoint events with P (A) = 0.2, P (B) = 0.3 and P (C) =
0.4, determine the following probabilities:

(a) P (A ∪B ∪ C)

(b) P (A ∩B ∩ C)

(c) P (A ∩B)

(d) P ((A ∪B) ∩ C)

(e) P (Ac ∩Bc ∩ Cc)

[Montgomery and Runger, 2010, Q2-75]

Solution :

(a) Because A, B, and C are disjoint, P (A∪B∪C) = P (A)+P (B)+P (C) = 0.3+0.2+0.4 =
0.9.
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(b) Because A, B, and C are disjoint, A∩B∩C = ∅ and hence P (A∩B∩C) = P (∅) = 0 .

(c) Because A and B are disjoint, A ∩B = ∅ and hence P (A ∩B) = P (∅) = 0 .

(d) (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). By the disjointness among A, B, and C, we have
(A ∩ C) ∪ (B ∩ C) = ∅ ∪ ∅ = ∅. Therefore, P ((A ∪B) ∩ C) = P (∅) = 0 .

(e) From Ac ∩ Bc ∩ Cc = (A ∪ B ∪ C)c, we have P (Ac ∩ Bc ∩ Cc) = 1− P (A ∪ B ∪ C) =
1− 0.9 = 0.1.
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HW Solution 2 — Due: February 8

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)

(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. The sample space of a random experiment is {a, b, c, d, e} with probabilities
0.1, 0.1, 0.2, 0.4, and 0.2, respectively. Let A denote the event {a, b, c}, and let B denote
the event {c, d, e}. Determine the following:

(a) P (A)

(b) P (B)

(c) P (Ac)

(d) P (A ∪B)

(e) P (A ∩B)

[Montgomery and Runger, 2010, Q2-55]

Solution :

(a) Recall that the probability of a finite or countable event equals the sum of the proba-
bilities of the outcomes in the event. Therefore,

P (A) = P ({a, b, c}) = P ({a}) + P ({b}) + P ({c})
= 0.1 + 0.1 + 0.2 = 0.4.
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(b) Again, the probability of a finite or countable event equals the sum of the probabilities
of the outcomes in the event. Thus,

P (B) = P ({c, d, e}) = P ({c}) + P ({d}) + P ({e})
= 0.2 + 0.4 + 0.2 = 0.8.

(c) P (Ac) = 1− P (A) = 1− 0.4 = 0.6.

(d) Note that A ∪B = Ω. Hence, P (A ∪B) = P (Ω) = 1.

(e) P (A ∩B) = P ({c}) = 0.2.

Problem 2.

(a) Suppose that P (A) = 1
2

and P (B) = 2
3
. Find the range of the possible value for

P (A ∩ B). Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003,
Q4.21]

(b) Suppose that P (A) = 1
2

and P (B) = 1
3
. Find the range of the possible value for

P (A ∪ B). Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003,
Q4.22]

Solution :

(a) We will first try to bound P (A ∩ B). Note that A ∩ B ⊂ A and A ∩ B ⊂ B. Hence,
we know that P (A∩B) ≤ P (A) and P (A∩B) ≤ P (B). To summarize, we now know
that

P (A ∩B) ≤ min{P (A), P (B)}.

On the other hand, we know that

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Applying the fact that P (A ∪B) ≤ 1, we then have

P (A ∩B) ≥ P (A) + P (B)− 1.

If the number of the RHS is > 0, then it is a new information. However, if the number
on the RHS is negative, it is useless and we will use the fact that P (A ∩ B) ≥ 0. To
summarize, we now know that

max{P (A) + P (B)− 1, 0} ≤ P (A ∩B).
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In conclusion,

max{(P (A) + P (B)− 1), 0} ≤ P (A ∩B) ≤ min{P (A), P (B)}.

Plugging in the value P (A) = 1
2

and P (B) = 2
3

gives the range

[
1

6
,
1

2

]
. The upper-

bound can be obtained by constructing an example which has A ⊂ B. The lower-bound
can be obtained by considering an example where A ∪B = Ω.

(b) By monotonicity we must have

P (A ∪B) ≥ max{P (A), P (B)}.

On the other hand, we know that

P (A ∪B) ≤ P (A) + P (B).

If the RHS is > 1, then the inequality is useless and we simply use the fact that it
must be ≤ 1. To summarize, we have

P (A ∪B) ≤ min{(P (A) + P (B)), 1}.

In conclusion,

max{P (A), P (B)} ≤ P (A ∪B) ≤ min{(P (A) + P (B)), 1}.

Plugging in the value P (A) = 1
2

and P (B) = 1
3
, we have

P (A ∪B) ∈
[

1

2
,
5

6

]
.

The upper-bound can be obtained by making A ⊥ B. The lower-bound is achieved
when B ⊂ A.

Problem 3. Let A and B be events for which P (A), P (B), and P (A ∪ B) are known.
Express the following probabilities in terms of the three known probabilities above.

(a) P (A ∩B)

(b) P (A ∩Bc)

(c) P (B ∪ (A ∩Bc))
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(d) P (Ac ∩Bc)

Solution :

(a) P (A ∩B) = P (A) + P (B)− P (A ∪B) . This property is shown in class.

(b) We have seen in class that P (A ∩Bc) = P (A)−P (A∩B). Plugging in the expression
for P (A ∩B) from the previous part, we have

P (A ∩Bc) = P (A)− (P (A) + P (B)− P (A ∪B)) = P (A ∪B)− P (B) .

Alternatively, we can start from scratch with the set identity A ∪ B = B ∪ (A ∩Bc)
whose union is a disjoint union. Hence,

P (A ∪B) = P (B) + P (A ∩Bc) .

Moving P (B) to the LHS finishes the proof.

(c) P (B ∪ (A ∩Bc)) = P (A ∪B) because A ∪B = B ∪ (A ∩Bc).

(d) P (Ac ∩Bc) = 1− P (A ∪B) because Ac ∩Bc = (A ∪B)c.

Problem 4.

(a) Suppose that P (A|B) = 0.4 and P (B) = 0.5 Determine the following:

(i) P (A ∩B)

(ii) P (Ac ∩B)

[Montgomery and Runger, 2010, Q2-105]

(b) Suppose that P (A|B) = 0.2, P (A|Bc) = 0.3 and P (B) = 0.8 What is P (A)? [Mont-
gomery and Runger, 2010, Q2-106]

Solution :

(a) Recall that P (A ∩B) = P (A|B)P (B). Therefore,

(i) P (A ∩B) = 0.4× 0.5 = 0.2.

(ii) P (Ac ∩B) = P (B \ A) = P (B)− P (A ∩B) = 0.5− 0.2 = 0.3.

Alternatively, P (Ac∩B) = P (Ac|B)P (B) = (1−P (A|B))P (B) = (1−0.4)×0.5 =
0.3.
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(b) By the total probability formula, P (A) = P (A|B)P (B) +P (A|Bc)P (Bc) = 0.2×0.8 +
0.3× (1− 0.8) = 0.22.

Problem 5. [Gubner, 2006, Q2.60] You have five computer chips, two of which are known
to be defective.

(a) You test one of the chips; what is the probability that it is defective?

(b) Your friend tests two chips at random and reports that one is defective and one is not.
Given this information, you test one of the three remaining chips at random; what is
the conditional probability that the chip you test is defective?

Solution :

(a)
2

5
(two of five chips are defective.)

(b) Among the three remaining chips, only one is defective. So, the conditional probability

that the chosen chip is defective is
1

3
.

Problem 6. Due to an Internet configuration error, packets sent from New York to Los
Angeles are routed through El Paso, Texas with probability 3/4. Given that a packet is
routed through El Paso, suppose it has conditional probability 1/3 of being dropped. Given
that a packet is not routed through El Paso, suppose it has conditional probability 1/4 of
being dropped.

(a) Find the probability that a packet is dropped.

(b) Find the conditional probability that a packet is routed through El Paso given that it
is not dropped.

[Gubner, 2006, Ex.1.20]

Solution : To solve this problem, we use the notation E = {routed through El Paso}
and D = {packet is dropped}. With this notation, it is easy to interpret the problem as
telling us that

P (D|E) = 1/3, P (D|Ec) = 1/4, and P (E) = 3/4.

(a) By the law of total probability,

P (D) = P (D|E)P (E) + P (D|Ec)P (Ec) = (1/3)(3/4) + (1/4)(1− 3/4)

= 1/4 + 1/16 = 5/16 .

2-5



IES 302 HW Solution 2 — Due: February 8 2011/2

(b) P (E|Dc) = P (E∩Dc)
P (Dc)

= P (Dc|E)P (E)
P (Dc)

= (1−1/3)(3/4)
1−5/16 =

8

11
.

Problem 7. You have two coins, a fair one with probability of heads 1
2

and an unfair one
with probability of heads 1

3
, but otherwise identical. A coin is selected at random and tossed,

falling heads up. How likely is it that it is the fair one? [Capinski and Zastawniak, 2003,
Q7.28]

Solution : Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively.

Because the coin is selected at random, the probability P (F ) of selecting the fair coin is
P (F ) = 1

2
. For fair coin, the conditional probability P (H|F ) of heads is 1

2
For the unfair

coin, P (U) = 1− P (F ) = 1
2

and P (H|U) = 1
3
.

By the Bayes’ formula, the probability that the fair coin has been selected given that it
lands heads up is

P (F |H) =
P (H|F )P (F )

P (H|F )P (F ) + P (H|U)P (U)
=

1
2
× 1

2
1
2
× 1

2
+ 1

3
× 1

2

=
1
2

1
2

+ 1
3

=
1

1 + 2
3

=
3

5
.

Problem 8. You have three coins in your pocket, two fair ones but the third biased with
probability of heads p and tails 1−p. One coin selected at random drops to the floor, landing
heads up. How likely is it that it is one of the fair coins? [Capinski and Zastawniak, 2003,
Q7.29]

Solution : Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively. We are given that

P (F ) =
2

3
, P (U) =

1

3
, P (H|F ) =

1

2
, P (H|U) = p.

By the Bayes’ formula, the probability that the fair coin has been selected given that it lands
heads up is

P (F |H) =
P (H|F )P (F )

P (H|F )P (F ) + P (H|U)P (U)
=

1
2
× 2

3
1
2
× 2

3
+ p× 1

3

=
1

1 + p
.

Problem 9. Someone has rolled a fair die twice. You know that one of the rolls turned up
a face value of six. What is the probability that the other roll turned up a six as well?

Hint: Not 1
6
.

Solution : Take as sample space the set {(i, j)|i, j = 1, . . . , 6}, where i and j denote the
outcomes of the first and second rolls. A probability of 1/36 is assigned to each element of
the sample space. The event of two sixes is given by A = {(6, 6)} and the event of at least
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one six is given by B = (1, 6), . . . , (5, 6), (6, 6), (6, 5), . . . , (6, 1). Applying the definition of
conditional probability gives

P (A|B) = P (A ∩B)/P (B) =
1/36

11/36
.

Hence the desired probability is 1/11 . [Tijms, 2007, Example 8.1, p. 244]

Problem 10. An article in the British Medical Journal [“Comparison of Treatment of Re-
nal Calculi by Operative Surgery, Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, Vol. 82, pp. 879892)] provided the following discussion of success
rates in kidney stone removals. Open surgery (OS) had a success rate of 78% (273/350) while
a newer method, percutaneous nephrolithotomy (PN), had a success rate of 83% (289/350).
This newer method looked better, but the results changed when stone diameter was con-
sidered. For stones with diameters less than two centimeters, 93% (81/87) of cases of open
surgery were successful compared with only 87% (234/270) of cases of PN. For stones greater
than or equal to two centimeters, the success rates were 73% (192/263) and 69% (55/80)
for open surgery and PN, respectively. Open surgery is better for both stone sizes, but less
successful in total. In 1951, E. H. Simpson pointed out this apparent contradiction (known
as Simpsons Paradox) but the hazard still persists today. Explain how open surgery can be
better for both stone sizes but worse in total. [Montgomery and Runger, 2010, Q2-115]

Solution : First, let’s recall the total probability theorem:

P (A) = P (A ∩B) + P (A ∩Bc)

= P (A |B )P (B) + P (A |Bc )P (Bc) .

We can see that P (A) does not depend only on P (A ∩B) and P (A |Bc ). It also depends
on P (B) and P (Bc). In the extreme case, we may imagine the case with P (B) = 1 in which
P (A) = P (A|B). At another extreme, we may imagine the case with P (B) = 0 in which
P (A) = P (A|Bc). Therefore, depending on the value of P (B), the value of P (A) can be
anywhere between P (A|B) and P (A|Bc).

Now, let’s consider events A1, B1, A2, and B2. Let P (A1|B1) = 0.93 and P (A1|Bc
1) =

0.73. Therefore, P (A1) ∈ [0.73, 0.93]. On the other hand, let P (A2|B2) = 0.87 and
P (A2|Bc

2) = 0.69. Therefore, P (A2) ∈ [0.69, 0.87]. With small value of P (B1), the value of
P (A1) can be 0.78 which is closer to its lower end of the bound. With large value of P (B2),
the value of P (A2) can be 0.83 which is closer to its upper end of the bound. Therefore,
even though P (A1|B1) > P (A2|B2) = 0.87 and P (A1|Bc

1) > P (A2|Bc
2), it is possible that

P (A1) < P (A2).
In the context of the paradox under consideration, note that the success rate of PN with

small stones (87%) is higher than the success rate of OS with large stones (73%). Therefore,
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by having a lot of large stone cases to be tested under OS and also have a lot of small stone
cases to be tested under PN, we can create a situation where the overall success rate of PN
comes out to be better then the success rate of OS. This is exactly what happened in the
study as shown in Table 2.1.

Applied Statistics and Probability for Engineers, 5th edition 15 January 2010 

2-19 

 P(R)= P(R|N)P(N) + P(R|A)P(A) + P(R|W)P(W) 
        = (0.02)(0.25) + (0.03) (0.6) + (0.06)(0.15) 
        = 0.032 
 
2-110. Let A denote the event that a respondent is a college graduate and let B denote the event that an individual votes for 

Bush.  
P(B) = P(A)P(B|A) + P(A’)P(B|A’) = (0.38 × 0.52) + (0.62 × 0.5) = 0.0613 

 
2-111. a) (0.88)(0.27) = 0.2376 

b)  (0.12)(0.13+0.52) = 0.0.078 
 

2-112.      a)P = 0.13×0.73=0.0949 
b)P = 0.87× (0.27+0.17)=0.3828 
 

2-113. Let A and B denote the event that the first and second part selected has excessive shrinkage, respectively. 
 a) P(B)= P( B A )P(A) + P(B A ')P(A') 
             = (4/24)(5/25) + (5/24)(20/25) = 0.20 
 b) Let C denote the event that the third part selected has excessive shrinkage. 
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2-114. Let A and B denote the events that the first and second chips selected are defective, respectively.  
 a) P(B) = P(B|A)P(A) + P(B|A')P(A') = (19/99)(20/100) + (20/99)(80/100) = 0.2 

 b) Let C denote the event that the third chip selected is defective. 
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2-115. 
 

Open surgery      

 success failure 
sample 

size 
sample 

percentage 
conditional 

success rate 
large stone 192 71 263 75% 73% 
small stone 81 6 87 25% 93% 

overall summary 273 77 350 100% 78% 
      

PN      

 success failure 
sample 

size 
sample 

percentage 
conditional 

success rate 
large stone 55 25 80 23% 69% 
small stone 234 36 270 77% 87% 

overall summary 289 61 350 100% 83% 
 

The overall success rate depends on the success rates for each stone size group, but also the probability of the groups. It 
is the weighted average of the group success rate weighted by the group size as follows 

P(overall success) = P(success| large stone)P(large stone)) + P(success| small stone)P(small stone). 
For open surgery, the dominant group (large stone) has a smaller success rate while for PN, the dominant group (small 
stone) has a larger success rate. 

 
2-116. P(A) = 112/204 = 0.5490, P(B) = 92/204 = 0.4510 

Table 2.1: Success rates in kidney stone removals.
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HW Solution 3 — Due: February 15

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)

(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. Suppose that for the general population, 1 in 5000 people carries the human
immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive (+) or
negative (-) response. Suppose the test gives the correct answer 99% of the time.

(a) What is P (−|H), the conditional probability that a person tests negative given that
the person does have the HIV virus?

(b) What is P (H|+), the conditional probability that a randomly chosen person has the
HIV virus given that the person tests positive?

Solution :

(a) Because the test is correct 99% of the time,

P (−|H) = P (+|Hc) = 0.01 .

(b) Using Bayes’ formula, P (H|+) = P (+|H)P (H)
P (+)

, where P (+) can be evaluated by the total
probability formula:

P (+) = P (+|H)P (H) + P (+|Hc)P (Hc) = 0.99× 0.0002 + 0.01× 0.9998.

Plugging this back into the Bayes’ formula gives

P (H|+) =
0.99× 0.0002

0.99× 0.0002 + 0.01× 0.9998
≈ 0.0194 .

Thus, even though the test is correct 99% of the time, the probability that a random
person who tests positive actually has HIV is less than 2%. The reason this probability
is so low is that the a priori probability that a person has HIV is very small.
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Problem 2.

(a) Suppose that P (A|B) = 1/3 and P (A|Bc) = 1/4. Find the range of the possible values
for P (A).

(b) Suppose that C1, C2, and C3 partition Ω. Furthermore, suppose we know that P (A|C1) =
1/3, P (A|C2) = 1/4 and P (A|C3) = 1/5. Find the range of the possible values for
P (A).

Solution : First recall the total probability theorem: Suppose we have a collection of
events B1, B2, . . . , Bn which partitions Ω. Then,

P (A) = P (A ∩B1) + P (A ∩B2) + · · ·P (A ∩Bn)

= P (A |B1 )P (B1) + P (A |B2 )P (B2) + · · ·P (A |Bn )P (Bn)

(a) Note that B and Bc partition Ω. So, we can apply the total probability theorem:

P (A) = P (A |B )P (B) + P (A |Bc )P (Bc) =
1

3
P (B) +

1

4
(1− P (B)) .

You may check that, by varying the value of P (B) from 0 to 1, we can get the value
of P (A) to be any number in the range

[
1
4
, 1
3

]
. Technically, we can not use P (B) = 0

because that would make P (A|B) not well-defined. Similarly, we can not use P (B) =
1 because that would mean P (Bc) = 0 and hence make P (A|Bc) not well-defined.

Therfore, the range of P (A) is

(
1

4
,
1

3

)
.

Note that larger value of P (A) is not possible because

P (A) =
1

3
P (B) +

1

4
(1− P (B)) <

1

3
P (B) +

1

3
(1− P (B)) =

1

3
.

Similarly, smaller value of P (A) is not possible because

P (A) =
1

3
P (B) +

1

4
(1− P (B)) >

1

4
P (B) +

1

3
(1− P (B)) =

1

4
.

(b) Again, we apply the total probability theorem:

P (A) = P (A |C1 )P (C1) + P (A |C2 )P (C2) + P (A |C3 )P (C3)

=
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) .
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Because C1, C2, and C3 partition Ω, we know that P (C1) + P (C2) + P (C3) = 1. Now,

P (A) =
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) <

1

3
P (C1) +

1

3
P (C2) +

1

3
P (C3) =

1

3
.

Similarly,

P (A) =
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) >

1

5
P (C1) +

1

5
P (C2) +

1

5
P (C3) =

1

5
.

Therefore, P (A) must be inside
(
1
5
, 1
3

)
.

You may check that any value of P (A) in the range

(
1

5
,
1

3

)
can be obtained by first

setting the value of P (C2) to be close to 0 and varying the value of P (C1) from 0 to 1.

Problem 3. A Web ad can be designed from four different colors, three font types, five font
sizes, three images, and five text phrases. A specific design is randomly generated by the
Web server when you visit the site. Let A denote the event that the design color is red and
let B denote the event that the font size is not the smallest one. Calculate the following
probabilities.

(a) P (A ∪B)

(b) P (A ∪Bc)

(c) P (Ac ∪Bc)

[Montgomery and Runger, 2010, Q2-84]

Solution :

(a) First recall that P (A∪B) = P (A) +P (B)−P (A∩C). For this problem, P (A) = 1/4
(red is one of the four colors) and P (B) = 4/5 (four of the five fonts can be used).
Because the design is randomly generated, events A and B are independent. Hence,

P (A ∩B) = 1
4
4
5

= 1
5

= 0.2. Therefore, P (A ∪B) = 1
4

+ 4
5
− 1

5
=

17

20
= 0.85.

(b) P (Ac ∪Bc) = 1− P (A ∩B) = 1− 0.2 = 0.8.

(c) P (A∪Bc) = 1−P (Ac∩B). Because A |= B, we also have Ac |= B. Hence, P (Ac∪Bc) =
1− P (Ac)P (B) = 1− 3

4
4
5

= 2
5

= 0.4.
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Problem 4. Anne and Betty go fishing. Find the conditional probability that Anne catches
no fish given that at least one of them catches no fish. Assume they catch fish independently
and that each has probability 0 < p < 1 of catching no fish. [Gubner, 2006, Q2.62]

Solution : Let A be the event that Anne catches no fish and B be the event that Betty
catches no fish. From the question, we know that A and B are independent. The event “at
least one of the two women catches nothing” can be represented by A ∪B. So we have

P (A|A ∪B) =
P (A ∩ (A ∪B))

P (A ∪B)
=

P (A)

P (A) + P (B)− P (A)P (B)
=

p

2p− p2
=

1

2− p
.

Problem 5. In this question, each experiment has equiprobable outcomes.

(a) Let Ω = {1, 2, 3, 4}, A1 = {1, 2}, A2 = {1, 3}, A3 = {2, 3}.

(i) Determine whether P (Ai ∩ Aj) = P (Ai)P (Aj) for all i 6= j.

(ii) Check whether P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

(iii) Are A1, A2, and A3 independent?

(b) Let Ω = {1, 2, 3, 4, 5, 6}, A1 = {1, 2, 3, 4}, A2 = A3 = {4, 5, 6}.

(i) Check whether P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

(ii) Check whether P (Ai ∩ Aj) = P (Ai)P (Aj) for all i 6= j.

(iii) Are A1, A2, and A3 independent?

Solution :

(a) We have P (Ai) = 1
2

and P (Ai ∩ Aj) = 1
4
.

(i) P (Ai ∩ Aj) = P (Ai)P (Aj) for any i 6= j.

(ii) A1 ∩ A2 ∩ A3 = ∅. Hence, P (A1 ∩ A2 ∩ A3) = 0, which is not the same as
P (A1)P (A2)P (A3).

(iii) No.

(b) We have P (A1) = 4
6

= 2
3

and P (A2) = P (A3) = 3
6

= 1
2
.

(i) A1 ∩ A2 ∩ A3 = {4}. Hence, P (A1 ∩ A2 ∩ A3) = 1
6
.

P (A1)P (A2)P (A3) = 2
3
1
2
1
2

= 1
6
.

Hence, P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).
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(ii) P (A2 ∩ A3) = P (A2) = 1
2
6= P (A2)P (A3)

P (A1 ∩ A2) = p(4) = 1
6
6= P (A1)P (A2)

P (A1 ∩ A3) = p(4) = 1
6
6= P (A1)P (A3)

Hence, P (Ai ∩ Aj) 6= P (Ai)P (Aj) for all i 6= j.

(iii) No.

Problem 6. A certain binary communication system has a bit-error rate of 0.1; i.e., in
transmitting a single bit, the probability of receiving the bit in error is 0.1. To transmit
messages, a three-bit repetition code is used. In other words, to send the message 1, 111 is
transmitted, and to send the message 0, 000 is transmitted. At the receiver, if two or more
1s are received, the decoder decides that message 1 was sent; otherwise, i.e., if two or more
zeros are received, it decides that message 0 was sent.

Assuming bit errors occur independently, find the probability that the decoder puts out
the wrong message.

[Gubner, 2006, Q2.62]

Solution : Let p = 0.1 be the bit error rate. Error event E occurs if there are at least
two bit errors. Therefore

P (E) =

(
3

2

)
p2(1− p) +

(
3

3

)
p3 = p2(3− 2p).

When p = 0.1, P (E) ≈ 0.028 .

Problem 7. In an experiment, A, B, C, and D are events with probabilities P (A∪B) = 5
8
,

P (A) = 3
8
, P (C ∩D) = 1

3
, and P (C) = 1

2
. Furthermore, A and B are disjoint, while C and

D are independent.

(a) Find

(i) P (A ∩B)

(ii) P (B)

(iii) P (A ∩Bc)

(iv) P (A ∪Bc)

(b) Are A and B independent?

(c) Find

(i) P (D)

(ii) P (C ∩Dc)
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(iii) P (Cc ∩Dc)

(iv) P (C|D)

(v) P (C ∪D)

(vi) P (C ∪Dc)

(d) Are C and Dc independent?

Solution :

(a)

(i) Because A ⊥ B, we have A ∩B = ∅ and hence P (A ∩B) = 0 .

(ii) Recall that P (A ∪ B) = P (A) + P (B)− P (A ∩ B). Hence, P (B) = P (A ∪ B)−
P (A) + P (A ∩B) = 5/8− 3/8 + 0 = 2/8 = boxed1/4.

(iii) P (A ∩Bc) = P (A)− P (A ∩B) = P (A) = 3/8 .

(iv) Start with P (A ∪Bc) = 1− P (Ac ∩B). Now, P (Ac ∩B) = P (B)− P (A ∩B) =

P (B) = 1/4. Hence, P (A ∪Bc) = 1− 1/4 = 3/4 .

(b) Events A and B are not independent because P (A ∩B) 6= P (A)P (B).

(c)

(i) Because C |= D, we have P (C ∩ D) = P (C)P (D). Hence, P (D) = P (C∩D)
P (C)

=
1/3
1/2

= 2/3 .

(ii) P (C ∩Dc) = P (C)− P (C ∩D) = 1/2− 1/3 = 1/6 .

Alternatively, because C |= D, we know that C |= Dc. Hence, P (C ∩ Dc) =
P (C)P (Dc) = 1

2

(
1− 2

3

)
= 1

2
1
3

= 1
6
.

(iii) First, we find P (C ∪D) = P (C) + P (D) − P (C ∩D) = 1/2 + 2/3 − 1/3 = 5/6.

Hence, P (Cc ∩Dc) = 1− P (C ∪D) = 1− 5/6 = 1/6 .

Alternatively, because C |= D, we know that Cc |= Dc. Hence, P (Cc ∩ Dc) =
P (Cc)P (Dc) =

(
1− 1

2

) (
1− 2

3

)
= 1

2
1
3

= 1
6
.

(iv) Because C |= D, we have P (C|D) = P (C) = 1/2 .

(v) In part (iii), we already found P (C ∪ D) = P (C) + P (D) − P (C ∩ D) = 1/2 +

2/3− 1/3 = 5/6 .
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(vi) P (C ∪Dc) = 1 − P (Cc ∩D) = 1 − P (Cc)P (D) = 1 − 1
2
2
3

= 2/3 . Note that we

use the fact that Cc |= D to get the second equality.

Alternatively, P (C ∪ Dc) = P (C) + P (Dc) − P (C ∩ DC). From (i), we have
P (D) = 2/3. Hence, P (Dc) = 1−2/3 = 1/3. From (ii), we have P (C∩DC) = 1/6.
Therefore, P (C ∪Dc) = 1/2 + 1/3− 1/6 = 2/3.

(d) Yes. We know that if C |= D, then C |= Dc.

Problem 8. Consider the sample space Ω = {−2,−1, 0, 1, 2, 3, 4}. For an event A ⊂ Ω,
suppose that P (A) = |A|/|Ω|. Define the random variable X(ω) = ω2. Find the probability
mass function of X.

Solution : Because |Ω| = 7, we have p(ω) = 1/7. The random variable maps the
outcomes −2,−1, 0, 1, 2, 3, 4 to numbers 4, 1, 0, 1, 4, 9, 16, respectively. Therefore,

pX (0) = P ({0}) =
1

7
,

pX (1) = P ({−1, 1}) =
2

7
,

pX (4) = P ({−2, 2}) =
2

7
,

pX (9) = P ({3}) =
1

7
, and

pX (16) = P ({4}) =
1

7
.

The pmf can then be expressed as

pX (x) =


1
7
, x = 0, 9, 16

2
7
, x = 1, 4

0, otherwise.

Problem 9. Suppose X is a random variable whose pmf at x = 0, 1, 2, 3, 4 is given by
pX(x) = 2x+1

25
.

Remark: Note that the statement above does not specify the value of the pX(x) at the
value of x that is not 0,1,2,3, or 4.

(a) What is pX(5)?

(b) Determine the following probabilities:

(i) P [X = 4]

(ii) P [X ≤ 1]
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(iii) P [2 ≤ X < 4]

(iv) P [X > −10]

Solution :

(a) First, we calculate
4∑

x=0

pX (x) =
4∑

x=0

2x + 1

25
=

25

25
= 1.

Therefore, there can’t be any other x with pX(x) > 0. At x = 5, we then conclude
that pX(5) = 0. The sam reasoning also implies that pX(x) = 0 at any x that is not
0,1,2,3, or 4.

(b) Recall that, for discrete random variable X, the probability

P [some condition(s) on X]

can be calculated by adding pX(x) for all x in the support of X that satisfies the given
condition(s).

(i) P [X = 4] = pX(4) = 2×4+1
25

=
9

25
.

(ii) P [X ≤ 1] = pX(0) + pX(1) = 2×0+1
25

+ 2×1+1
25

= 1
25

+ 3
25

=
4

25
.

(iii) P [2 ≤ X < 4] = pX(2) + pX(3) = 2×2+1
25

+ 2×3+1
25

= 5
25

+ 7
25

=
12

25
.

(iv) P [X > −10] = 1 because all the x in the support of X satisfies x > −10.
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Lecturer: Prapun Suksompong, Ph.D.

Problem 1. The random variable V has pmf

pV (v) =

{
cv2, v = 1, 2, 3, 4,
0, otherwise.

(a) Find the value of the constant c.

(b) Find P [V ∈ {u2 : u = 1, 2, 3, . . .}].

(c) Find the probability that V is an even number.

(d) Find P [V > 2].

(e) Sketch pV (v).

(f) Sketch FV (v).

Solution : [Y&G, Q2.2.3]

(a) We choose c so that the pmf sums to one:∑
v

pV (v) = c(12 + 22 + 32 + 42) = 30c = 1.

Hence, c = 1/30 .

(b) P [V ∈ {u2 : u = 1, 2, 3, . . .}] = pV (1) + pV (4) = c(12 + 42) = 17/30 .

(c) P [V even] = pV (2) + pV (4) = c(22 + 42) = 20/30 = 2/3 .

(d) P [V > 2] = pV (3) + pV (4) = c(32 + 42) = 25/30 = 5/6 .

(e) Sketch of pV (v):

(f) Sketch of FV (v):
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Problem 2. An optical inspection system is to distinguish among different part types.
The probability of a correct classification of any part is 0.98. Suppose that three parts are
inspected and that the classifications are independent.

(a) Let the random variable X denote the number of parts that are correctly classified.
Determine the probability mass function of X. [Montgomery and Runger, 2010, Q3-20]

(b) Let the random variable Y denote the number of parts that are incorrectly classified.
Determine the probability mass function of Y .

Solution :

(a) X is a binomial random variable with n = 3 and p = 0.98. Hence,

pX (x) =

{ (
3
x

)
0.98x(0.02)3−x, x ∈ {0, 1, 2, 3},

0, otherwise
(4.1)

In particular, pX(0) = 8 × 10−6, pX(1) = 0.001176, pX(2) = 0.057624, and pX(3) =
0.941192. Note that in MATLAB, these probabilities can be calculated by evaluating
binopdf(0:3,3,0.98).
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(b) Y is a binomial random variable with n = 3 and p = 0.02. Hence,

pY (y) =

{ (3
y

)
0.02y(0.98)3−y, y ∈ {0, 1, 2, 3},

0, otherwise
(4.2)

In particular, pY (0) = 0.941192, pY (1) = 0.057624, pY (2) = 0.001176, and pY (3) =
8× 10−6. Note that in MATLAB, these probabilities can be calculated by evaluating
binopdf(0:3,3,0.02).

Alternatively, note that there are three parts. If X of them are classified correctly,
then the number of incorrectly classified parts is n−X, which is what we defined as Y .
Therefore, Y = 3−X. Hence, pY (y) = P [Y = y] = P [3−X = y] = P [X = 3− y] =
pX(3− y).

Problem 3. The thickness of the wood paneling (in inches) that a customer orders is a
random variable with the following cdf:

FX(x) =


0, x < 1

8

0.2, 1
8
≤ x < 1

4

0.9, 1
4
≤ x < 3

8

1 x ≥ 3
8

Determine the following probabilities:

(a) P [X ≤ 1/18]

(b) P [X ≤ 1/4]

(c) P [X ≤ 5/16]

(d) P [X > 1/4]

(e) P [X ≤ 1/2]

[Montgomery and Runger, 2010, Q3-42]

Solution :

(a) P [X ≤ 1/18] = FX(1/18) = 0 because 1
18
< 1

8
.

(b) P [X ≤ 1/4] = FX(1/4) = 0.9

(c) P [X ≤ 5/16] = FX(5/16) = 0.9 because 1
4
< 5

16
< 1

8
.

(d) P [X > 1/4] = 1− P [X ≤ 1/4] = 1− FX(1/4) = 1− 0.9 = 0.1.
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(e) P [X ≤ 1/2] = FX(1/2) = 1 because 1
2
> 3

8
.

Alternatively, we can also derive the pmf first and then calculate the probabilities.

Problem 4. Plot the Poisson pmf for α = 10, 30, and 50.

Solution : See Figure 4.1.70 Introduction to discrete random variables

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

k

Figure 2.5. The Poisson(λ ) pmf pX (k) = λ ke−λ /k! for λ = 10,30, and 50 from left to right, respectively.

Solution. Let X denote the number of hits. Then

P(X ≥ 1) = 1−P(X = 0) = 1− e−λ = 1− e−2 ≈ 0.865.

Similarly,

P(X ≥ 2) = 1−P(X = 0)−P(X = 1)

= 1− e−λ −λe−λ

= 1− e−λ (1+λ )

= 1− e−2(1+2) ≈ 0.594.

2.3 Multiple random variables

If X and Y are random variables, we use the shorthand

{X ∈ B,Y ∈C} := {ω ∈ Ω : X(ω) ∈ B and Y (ω) ∈C},
which is equal to

{ω ∈ Ω : X(ω) ∈ B}∩{ω ∈ Ω : Y (ω) ∈C}.
Putting all of our shorthand together, we can write

{X ∈ B,Y ∈C} = {X ∈ B}∩{Y ∈C}.
We also have

P(X ∈ B,Y ∈C) := P({X ∈ B,Y ∈C})
= P({X ∈ B}∩{Y ∈C}).

Figure 4.1: The Poisson pmf for α = 10, 30, and 50 from left to right, respectively. [Gubner,
2006, Figure 2.5]

Problem 5. Let X ∼ P(α).

(a) Evaluate P [X > 1]. Your answer should be in terms of α.

(b) Compute the numerical value of P [X > 1] when α = 1.

Solution :

(a) P [X > 1] = 1− P [X ≤ 1] = 1− (P [X = 0] + P [X = 1]) = 1− e−α (1 + α) .

(b) 0.264 .
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Problem 6. When n is large, binomial distribution Binomial(n, p) becomes difficult to
compute directly because of the need to calculate factorial terms. In this question, we
will consider an approximation when p is close to 0. In such case, the binomial can be
approximated by the Poisson distribution with parameter α = np.

More specifically, suppose Xn has a binomial distribution with parameters n and pn. If
pn → 0 and npn → α as n→∞, then

P [Xn = k]→ e−α
αk

k!
.

(a) Let X ∼ Binomial(12, 1/36). (For example, roll two dice 12 times and let X be the
number of times a double 6 appears.) Evaluate pX(x) for x = 0, 1, 2.

(b) Compare your answers in the previous part with the Poisson approximation.

(c) Compare the plot of pX(x) and P(np).

Solution :

(a) 0.7132, 0.2445, 0.0384.

(b) 0.7165, 0.2388, 0.0398.

(c) See Figure 4.2.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

 

 
Binomial pmf
Poisson pmf

Figure 4.2: Poisson Approximation
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Problem 7. In one of the New York state lottery games, a number is chosen at random
between 0 and 999. Suppose you play this game 250 times. Use the Poisson approximation
to estimate the probability that you will never win and compare this with the exact answer.

Solution : [Durrett, 2009, Q2.41] LetW be the number of wins. Then, W ∼ Binomial(250, p)
where p = 1/1000. Hence,

P [W = 0] =

(
250

0

)
p0(1− p)250 ≈ 0.7787.

If we approximate W by Λ ∼ P(α). Then we need to set

α = np =
250

1000
=

1

4
.

In which case,

P [Λ = 0] = e−α
α0

0!
= e−α ≈ 0.7788

which is very close to the answer from direct calculation.

Problem 8. Suppose X is a random variable whose pmf at x = 0, 1, 2, 3, 4 is given by
pX(x) = 2x+1

25
. Determine its expected value and variance. [Montgomery and Runger, 2010,

Q3-51]

Solution :

EX =
4∑

x=0

xpX(x) =
4∑

x=0

x
2x+ 1

25
= 0 + 1

(
3

25

)
+ 2

(
5

25

)
+ 3

(
7

25

)
+ 4

(
9

25

)
=

70

25
=

14

5
= 2.8.

E
[
X2
]

=
4∑

x=0

x2pX(x) =
4∑

x=0

x2
2x+ 1

25
= 0 + 12

(
3

25

)
+ 22

(
5

25

)
+ 32

(
7

25

)
+ 42

(
9

25

)
=

230

25
=

46

5
= 9.2

VarX = E
[
X2
]
− (EX)2 = 9.2− 2.82 = 1.36.

Problem 9. An article in Information Security Technical Report [“Malicious Software—
Past, Present and Future” (2004, Vol. 9, pp. 618)] provided the data (shown in Figure 4.3)
on the top ten malicious software instances for 2002. The clear leader in the number of
registered incidences for the year 2002 was the Internet worm “Klez”. This virus was first

4-6



IES 302 HW Solution 4 — Not Due 2011/2

3-6 BINOMIAL DISTRIBUTION 85

and they can be considered to be independent for mutation.
Determine the following probabilities. The binomial table in
Appendix A can help.
(a) No samples are mutated.
(b) At most one sample is mutated.
(c) More than half the samples are mutated.

3-89. An article in Information Security Technical Report
[“Malicious Software—Past, Present and Future” (2004, Vol. 9,
pp. 6–18)] provided the following data on the top ten mali-
cious software instances for 2002. The clear leader in the num-
ber of registered incidences for the year 2002 was the Internet
worm “Klez,” and it is still one of the most widespread threats.
This virus was first detected on 26 October 2001, and it has
held the top spot among malicious software for the longest 
period in the history of virology.

Place Name % Instances

1 I-Worm.Klez 61.22%

2 I-Worm.Lentin 20.52%

3 I-Worm.Tanatos 2.09%

4 I-Worm.BadtransII 1.31%

5 Macro.Word97.Thus 1.19%

6 I-Worm.Hybris 0.60%

7 I-Worm.Bridex 0.32%

8 I-Worm.Magistr 0.30%

9 Win95.CIH 0.27%

10 I-Worm.Sircam 0.24%

The 10 most widespread malicious programs for 2002
(Source—Kaspersky Labs).

Suppose that 20 malicious software instances are reported.
Assume that the malicious sources can be assumed to be inde-
pendent.
(a) What is the probability that at least one instance is “Klez”?
(b) What is the probability that three or more instances are

“Klez”?
(c) What are the mean and standard deviation of the number

of “Klez” instances among the 20 reported?

3-90. Heart failure is due to either natural occurrences
(87%) or outside factors (13%). Outside factors are related to
induced substances or foreign objects. Natural occurrences are
caused by arterial blockage, disease, and infection. Suppose
that 20 patients will visit an emergency room with heart failure.
Assume that causes of heart failure between individuals are 
independent.
(a) What is the probability that three individuals have condi-

tions caused by outside factors?
(b) What is the probability that three or more individuals have

conditions caused by outside factors?
(c) What are the mean and standard deviation of the number

of individuals with conditions caused by outside factors?

3-91. A computer system uses passwords that are exactly
six characters and each character is one of the 26 letters (a–z)
or 10 integers (0–9). Suppose there are 10,000 users of the
system with unique passwords. A hacker randomly selects
(with replacement) one billion passwords from the potential
set, and a match to a user’s password is called a hit.
(a) What is the distribution of the number of hits?
(b) What is the probability of no hits?
(c) What are the mean and variance of the number of hits?

3-92. A statistical process control chart example. Samples
of 20 parts from a metal punching process are selected every
hour. Typically, 1% of the parts require rework. Let X denote
the number of parts in the sample of 20 that require rework. A
process problem is suspected if X exceeds its mean by more
than three standard deviations.
(a) If the percentage of parts that require rework remains at

1%, what is the probability that X exceeds its mean by
more than three standard deviations?

(b) If the rework percentage increases to 4%, what is the
probability that X exceeds 1?

(c) If the rework percentage increases to 4%, what is the
probability that X exceeds 1 in at least one of the next five
hours of samples?

3-93. Because not all airline passengers show up for their
reserved seat, an airline sells 125 tickets for a flight that holds
only 120 passengers. The probability that a passenger does not
show up is 0.10, and the passengers behave independently.
(a) What is the probability that every passenger who shows

up can take the flight?
(b) What is the probability that the flight departs with empty

seats?

3-94. This exercise illustrates that poor quality can affect
schedules and costs. A manufacturing process has 100 customer
orders to fill. Each order requires one component part that is
purchased from a supplier. However, typically, 2% of the com-
ponents are identified as defective, and the components can be
assumed to be independent.
(a) If the manufacturer stocks 100 components, what is the

probability that the 100 orders can be filled without
reordering components?

(b) If the manufacturer stocks 102 components, what is the
probability that the 100 orders can be filled without
reordering components?

(c) If the manufacturer stocks 105 components, what is the
probability that the 100 orders can be filled without
reordering components?

3-95. Consider the lengths of stay at a hospital’s emergency
department in Exercise 3-29. Assume that five persons inde-
pendently arrive for service.
(a) What is the probability that the length of stay of exactly

one person is less than or equal to 4 hours?
(b) What is the probability that exactly two people wait more

than 4 hours?

JWCL232_c03_066-106.qxd  1/7/10  10:58 AM  Page 85

Figure 4.3: The 10 most widespread malicious programs for 2002 (Source—Kaspersky Labs).

detected on 26 October 2001, and it has held the top spot among malicious software for the
longest period in the history of virology.

Suppose that 20 malicious software instances are reported. Assume that the malicious
sources can be assumed to be inde- pendent.

(a) What is the probability that at least one instance is “Klez”?

(b) What is the probability that three or more instances are “Klez”?

(c) What are the expected value and standard deviation of the number of “Klez” instances
among the 20 reported?

Solution : Let N be the number of instances (among the 20) that are “Klez”. Then,
N ∼binomial(n, p) where n = 20 and p = 0.6122.

(a) P [N ≥ 1] = 1−P [N < 1] = 1−P [N = 0] = 1−pN(0) = 1−
(
20
0

)
×0.61220×0.387820 ≈

0.9999999941 ≈ 1.

(b)
P [N ≥ 3] = 1− P [N < 3] = 1− (P [N = 0] + P [N = 1] + P [N = 2])

= 1−
2∑

k=0

(
20

k

)
(0.6122)k(0.3878)20−k ≈ 0.999997

(c) EN = np = 20× 0.6122 = 12.244.
σN =

√
VarN =

√
np(1− p) =

√
20× 0.6122× 0.3878 ≈ 2.179.
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Problem 10. The random variable V has pmf

pV (v) =

{
1
v2

+ c, v ∈ {−2, 2, 3}
0, otherwise.

(a) Find the value of the constant c.

(b) Find P [V > 3].

(c) Find P [V < 3].

(d) Find P [V 2 > 1].

(e) Let W = V 2 − V + 1. Find the pmf of W .

(f) Find EV

(g) Find E [V 2]

(h) Find VarV

(i) Find σV

(j) Find EW

Solution :

(a) The pmf must sum to 1. Hence,

1

(−2)2
+ c+

1

(2)2
+ c+

1

(3)2
+ c = 1.

The value of c must be

c =
1

3

(
1− 1

4
− 1

4
− 1

9

)
=

7

54
≈ 0.1296

Note that this gives

pV (−2) = pV (2) =
41

108
≈ 0.38 and pV (3) =

13

54
≈ 0.241.

(b) P [V > 3] = 0 because all elements in the support of V are ≤ 3.

(c) P [V < 3] = 1− pV (3) = 41
54
≈ 0.759.
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(d) P [V 2 > 1] = 1 because the square of any element in the support of V is > 1.

(e) W = V 2 − V + 1. So, when V = −2, 2, 3, we have W = 7, 3, 7, respectively. Hence, W
takes only two values, 7 and 3. the corresponding probabilities are

P [W = 7] = pV (−2) + pV (3) =
67

108
≈ 0.62.

and

P [W = 3] = pV (2) =
41

108
≈ 0.38.

Hence, the pmf of W is given by

pW (w) =


41
108
, w = 3,

67
108
, w = 7,

0, otherwise.
≈


0.38, w = 3,
0.62, w = 7,
0, otherwise.

(f) EV = 13
18
≈ 0.7222

(g) EV 2 = 281
54
≈ 5.2037

(h) VarV = EV 2 − (EV )2 = 1517
324
≈ 4.682.

(i) σV =
√

VarV ≈ 2.1638

(j) EW = 5.4815
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