IES 302: Engineering Statistics 2011/2

HW Solution 1 — Due: February 1
Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)
(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. (Set Theory)

(a) Three events are shown on the Venn diagram in the following figure:

Reproduce the figure and shade the region that corresponds to each of the following
events.

[Montgomery and Runger, 2010, Q2-19]
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(b) Let Q2 =1{0,1,2,3,4,5,6,7}, and put A = {1,2,3,4}, B ={3,4,5,6}, and C = {5,6}.
Find AUB, AN B, ANC, A, and B\ A.

For this problem, only answers are needed; you don’t have to describe your solution.

Solution:

(a) See Figure

(@ (b)

(d) (e)

Figure 1.1: Venn diagrams for events in Problem

(b) AUB =1{1,2,3,4,5,6}, ANB ={3,4}, ANC =0, B\ A= {5,6} = C.

Problem 2. (Classical Probability) There are three buttons which are painted red on one
side and white on the other. If we tosses the buttons into the air, calculate the probability
that all three come up the same color.

Remarks: A wrong way of thinking about this problem is to say that there are four ways
they can fall. All red showing, all white showing, two reds and a white or two whites and a
red. Hence, it seems that out of four possibilities, there are two favorable cases and hence
the probability is 1/2.

Solution: There are 8 possible outcomes. (The same number of outcomes as tossing
three coins.) Among these, only two outcomes will have all three buttons come up the same

color. So, the probability is 2/8 =|1/4|.
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Problem 3. (Classical Probability) A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text phrases.

(a) How many different designs are possible? [Montgomery and Runger, 2010, 2-51]

(b) A specific design is randomly generated by the Web server when you visit the site. If
you visit the site five times, what is the probability that you will not see the same
design? [Montgomery and Runger, 2010, Q2-71]

Solution:

(a) By the multiplication rule, total number of possible designs

=4 x3x5x3x5=[900].

(b) From part (a), total number of possible designs is 900. The sample space is now the
set of all possible designs that may be seen on five visits. It contains (900)° outcomes.
(This is ordered sampling with replacement.)

The number of outcomes in which all five visits are different can be obtained by realizing
that this is ordered sampling without replacement and hence there are (900); outcomes.
(Alternatively, On the first visit any one of 900 designs may be seen. On the second visit
there are 899 remaining designs. On the third visit there are 898 remaining designs.
On the fourth and fifth visits there are 897 and 896 remaining designs, respectively.
From the multiplication rule, the number of outcomes where all designs are different
is 900 x 899 x 898 x 897 x 896.)

Therefore, the probability that a design is not seen again is

S0~

Problem 4. (Combinatorics) Consider the design of a communication system in the
United States.

(a) How many three-digit phone prefixes that are used to represent a particular geographic
area (such as an area code) can be created from the digits 0 through 97

(b) How many three-digit phone prefixes are possible in which no digit appears more than
once in each prefix?

(c) Asin part (a), how many three-digit phone prefixes are possible that do not start with
0 or 1, but contain 0 or 1 as the middle digit?
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[Montgomery and Runger, 2010, Q2-45]

Solution:

(a) From the multiplication rule (or by realizing that this is ordered sampling with re-

placement), 10® = |1, 000 | prefixes are possible

(b) This is ordered sampling without replacement. Therefore (10); = 10 x 9 x 8 =
prefixes are possible

(c¢) From the multiplication rule, 8 x 2 x 10 = prefixes are possible.

Problem 5. (Classical Probability) A bin of 50 parts contains five that are defective. A

sample of two parts is selected at random, without replacement. Determine the probability

that both parts in the sample are defective. [Montgomery and Runger, 2010, Q2-49]
Solution: The number of ways to select two parts from 50 is (520

ways to select two defective parts from the 5 defective ones is (5) Therefore the probability

) 0 |
2
ﬁ = o 0.0082|.
2

) and the number of

Problem 6. (Classical Probability) We all know that the chance of a head (H) or tail
(T) coming down after a fair coin is tossed are fifty-fifty. If a fair coin is tossed ten times,
then intuition says that five heads are likely to turn up.

Calculate the probability of getting exactly five heads (and hence exactly five tails).

Solution: There are 2'° possible outcomes for ten coin tosses. (For each toss, there is
two possibilities, H or T). Only (150) among these outcomes have exactly heads and five tails.
(Choose 5 positions from 10 position for H. Then, the rest of the positions are automatically
T.) The probability of have exactly 5 H and 5 T is

(5)
5~ 0.246.

Note that five heads and five tails will turn up more frequently than any other single
combination (one head, nine tails for example) but the sum of all the other possibilities is
much greater than the single 5 H, 5 T combination.
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Problem 7. (Classical Probability) Shuffle a deck of cards and cut it into three piles.
What is the probability that (at least) a court card will turn up on top of one of the piles.
Hint: There are 12 court cards (four jacks, four queens and four kings) in the deck.

Solution: In [Lovell, 2006, p. 17-19], this problem is named “Three Lucky Piles”. When
somebody cuts three piles, they are, in effect, randomly picking three cards from the deck.
There are 52 x 51 x 50 possible outcomes. The number of outcomes that do not contain any
court card is 40 x 39 x 38. So, the probability of having at least one court card is

52 x 51 x 50 — 40 x 39 x 38

52 x 51 x 50 ~ 0.553.

Problem 8. Binomaal theorem: For any positive integer n, we know that

(@+y)" = i (:) T (1.1)

r=0

(a) What is the coefficient of x'2y? in the expansion of (z + y)??

(b) What is the coefficient of z'?y'3 in the expansion of (2x — 3y)??

n

(¢) Use the binomial theorem (1.1)) to evaluate Y (—1)*(}).

k
k=0

Solution:

(@) (39 = [5:200.300]

(b) (35)212(~3)' = — 22212315 — [33050763545702400]

T 12131

(¢) From (L)), set # = —1 and y = 1, then we have Y (=1)*(}) = (=14 1)" = 0]

k=0

Problem 9. Each of the possible five outcomes of a random experiment is equally likely.
The sample space is {a, b, c,d,e}. Let A denote the event {a, b}, and let B denote the event
{¢,d,e}. Determine the following:

(a) P(A)
(b) P(B)
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(c) P(A%)
(d) P(AUB)
(e) P(ANB)
[Montgomery and Runger, 2010, Q2-54]

Solution: Because the outcomes are equally likely, we can simply use classical proba-
bility.

Problem 10. If A, B, and C' are disjoint events with P(A) = 0.2, P(B) = 0.3 and P(C) =
0.4, determine the following probabilities:

[Montgomery and Runger, 2010, Q2-75]

Solution:

(a) Because A, B, and C are disjoint, P(AUBUC) = P(A)+P(B)+P(C) = 0.340.240.4 =
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(b) Because A, B, and C are disjoint, AN BNC = § and hence P(ANBNC) = P(})) =[0].
(¢) Because A and B are disjoint, AN B = () and hence P(AN B) = P()) =[0].

(d) (AuB)NC = (ANC)uU(BNC). By the disjointness among A, B, and C, we have
(ANC)U(BNC)=0UP=0. Therefore, P (AU B)NC) = P(P) =[0]

(e) From A°NB°NC*=(AUBUC) we have P(A°NB°NC°)=1—-P(AUBUC) =

1-09=[0.1]
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HW Solution 2 — Due: February 8

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)
(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. The sample space of a random experiment is {a,b, ¢, d, e} with probabilities
0.1, 0.1, 0.2, 0.4, and 0.2, respectively. Let A denote the event {a,b,c}, and let B denote
the event {c,d, e}. Determine the following:

[Montgomery and Runger, 2010, Q2-55]
Solution:

(a) Recall that the probability of a finite or countable event equals the sum of the proba-
bilities of the outcomes in the event. Therefore,

P(A) = P ({a,b,c}) = P({a}) + P ({b}) + P ({c})
=0.140.14+02=04.
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(b) Again, the probability of a finite or countable event equals the sum of the probabilities
of the outcomes in the event. Thus,

P(B) = P({c,d,e}) = P({c}) + P({d}) + P ({e})
=02+04+02=08]
(¢c) P(A)=1—-P(A)=1-04=
(d) Note that AU B = Q. Hence, P(AU B) = P(Q) =
(e) P(ANB) = P({c}) =
Problem 2.

Find the range of the possible value for
val [0,1]. [Capinski and Zastawniak, 2003,

(a) Suppose that P(A) = L and P(B) =

2
P(A N B). Hint: Smaller than the inte

Q4.21]

Wi

—

(b) Suppose that P(A) = 3 and P(B) =

P(A U B). Hint: Smaller than the inte
Q4.22]

Find the range of the possible value for
val [0,1]. [Capinski and Zastawniak, 2003,

- Wl

Solution:

(a) We will first try to bound P(AN B). Note that AN B C A and AN B C B. Hence,
we know that P(AN B) < P(A) and P(AN B) < P(B). To summarize, we now know
that

P(AN B) <min{P(A), P(B)}.

On the other hand, we know that
P(AUB)=P(A)+ P(B)— P(AN B).
Applying the fact that P(AU B) < 1, we then have
P(ANnB)> P(A)+ P(B) — 1.

If the number of the RHS is > 0, then it is a new information. However, if the number
on the RHS is negative, it is useless and we will use the fact that P(AN B) > 0. To
summarize, we now know that

max{P(A) + P(B) — 1,0} < P(AN B).
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In conclusion,

max{(P(A) + P(B) —1),0} < P(AN B) < min{P(A), P(B)}.

11
Plugging in the value P(A) = % and P(B) = % gives the range [8, 5} . The upper-
bound can be obtained by constructing an example which has A C B. The lower-bound
can be obtained by considering an example where AU B = ().

By monotonicity we must have
P(AUB) > max{P(A), P(B)}.
On the other hand, we know that
P(AUB) < P(A)+ P(B).

If the RHS is > 1, then the inequality is useless and we simply use the fact that it
must be < 1. To summarize, we have

P(AUB) <min{(P(A) + P(B)), 1}.
In conclusion,
max{P(A), P(B)} < P(AU B) <min{(P(A) + P(B)), 1}.

Plugging in the value P(A) = § and P(B) = %, we have

P(AUB) € E,g} .

The upper-bound can be obtained by making A 1 B. The lower-bound is achieved
when B C A.

Problem 3. Let A and B be events for which P(A), P(B), and P(A U B) are known.
Express the following probabilities in terms of the three known probabilities above.

(a)
(b)
(c)

P(ANB)
P(AN B°)
P(BU (AN BY))
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(d) P(A°N B°)

Solution:

(a) P(ANB) =|P(A)+ P(B) — P(AU B)|. This property is shown in class.

(b) We have seen in class that P (AN B°) = P (A) — P(AN B). Plugging in the expression
for P(A N B) from the previous part, we have

P(ANB) = P(A) — (P(A) + P(B) — P(AUB)) = P(AUB) — P(B)|

Alternatively, we can start from scratch with the set identity AU B = BU (AN B°)
whose union is a disjoint union. Hence,

P(AUB) = P(B)+P(ANB").

Moving P(B) to the LHS finishes the proof.

(¢) P(BU(ANB°))=|P(AUB)|because AUB = BU (AN B°).

(d) P(A°NB°) =|1—P(AUDB)|because A°N B°= (AU B)".

Problem 4.
(a) Suppose that P(A|B) = 0.4 and P(B) = 0.5 Determine the following:
(i) P(ANB)
(ii) P(A°N B)
[Montgomery and Runger, 2010, Q2-105]
(b) Suppose that P(A|B) = 0.2, P(A|B¢) = 0.3 and P(B) = 0.8 What is P(A)? [Mont-
gomery and Runger, 2010, Q2-106]
Solution:
(a) Recall that P(AN B) = P(A|B)P(B). Therefore,
(i) P(ANB) =04 x0.5=
(i) P(A°NB)=P(B\A)=P(B)—P(ANB)=05-02=

Alternatively, P(A°NB) = P(A¢|B)P(B) = (1— P(A|B))P(B) = (1—0.4)x0.5 =
0.3,



IES 302 HW Solution 2 — Due: February 8 2011/2

(b) By the total probability formula, P(A) = P(A|B)P(B)+ P(A|B)P(B¢) = 0.2 x 0.8+
0.3 % (1—0.8) =

Problem 5. [Gubner, 2006, Q2.60] You have five computer chips, two of which are known
to be defective.

(a) You test one of the chips; what is the probability that it is defective?

(b) Your friend tests two chips at random and reports that one is defective and one is not.
Given this information, you test one of the three remaining chips at random; what is
the conditional probability that the chip you test is defective?

Solution:

2
(a) (two of five chips are defective.)

(b) Among the three remaining chips, only one is defective. So, the conditional probability

1
that the chosen chip is defective is 3"

Problem 6. Due to an Internet configuration error, packets sent from New York to Los
Angeles are routed through El Paso, Texas with probability 3/4. Given that a packet is
routed through El Paso, suppose it has conditional probability 1/3 of being dropped. Given
that a packet is not routed through El Paso, suppose it has conditional probability 1/4 of
being dropped.

(a) Find the probability that a packet is dropped.

(b) Find the conditional probability that a packet is routed through El Paso given that it
is not dropped.

[Gubner, 2006, Ex.1.20]

Solution: To solve this problem, we use the notation £ = {routed through El Paso}
and D = {packet is dropped}. With this notation, it is easy to interpret the problem as
telling us that

P(D|E)=1/3, P(D|E°)=1/4, and P(E) = 3/4.

(a) By the law of total probability,
P(D) = P(D|E)P(E) + P(D|E°)P(E") = (1/3)(3/4) + (1/4)(1 — 3/4)
= 1/4+1/16 = [5/16].
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(b) P(E|D¢) = 20D _ PIABIEE) _ (-1/3)3/4)

P(D°) P(D¢) 1-5/16 11 [

Problem 7. You have two coins, a fair one with probability of heads % and an unfair one
with probability of heads %, but otherwise identical. A coin is selected at random and tossed,
falling heads up. How likely is it that it is the fair one? [Capinski and Zastawniak, 2003,

Q7.28]

Solution: Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively.

Because the coin is selected at random, the probability P(F') of selecting the fair coin is
P(F) = L. For fair coin, the conditional probability P(H|F) of heads is 3 For the unfair
coin, P(U) =1— P(F) =4 and P(H|U) = 3.

By the Bayes’ formula, the probability that the fair coin has been selected given that it

lands heads up is
1
1 =1, 1 2 :
x3 3tz 1+3 5

Problem 8. You have three coins in your pocket, two fair ones but the third biased with
probability of heads p and tails 1 —p. One coin selected at random drops to the floor, landing
heads up. How likely is it that it is one of the fair coins? [Capinski and Zastawniak, 2003,
Q7.29]

P(H|F)P(F) _
(H|F)P(F)+ P(HIU)P(U) 1 x

X
P(F|H) =
(FIH) = 5 -

NN
WMo~

Solution: Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively. We are given that

P(F)=:. P(U)=5, P(H|F)= % P(H|U) = p.

By the Bayes’ formula, the probability that the fair coin has been selected given that it lands
heads up is

P(H|F)P(F) 53X _| 1
(H|F)P(F)+ P(HU)P(U) ~ Tx2+4pxi |14p|

wino

P(FIH) = -

Problem 9. Someone has rolled a fair die twice. You know that one of the rolls turned up
a face value of six. What is the probability that the other roll turned up a six as well?
Hint: Not %.

Solution: Take as sample space the set {(4,4)|i,7 =1,...,6}, where i and j denote the
outcomes of the first and second rolls. A probability of 1/36 is assigned to each element of
the sample space. The event of two sixes is given by A = {(6,6)} and the event of at least
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one six is given by B = (1,6),...,(5,6),(6,6),(6,5),...,(6,1). Applying the definition of
conditional probability gives

P(A|B) = P(AN B)/P(B) = 111/%

Hence the desired probability is|1/11|. [Tijms, 2007, Example 8.1, p. 244]

Problem 10. An article in the British Medical Journal [“Comparison of Treatment of Re-
nal Calculi by Operative Surgery, Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, Vol. 82, pp. 879892)] provided the following discussion of success
rates in kidney stone removals. Open surgery (OS) had a success rate of 78% (273/350) while
a newer method, percutaneous nephrolithotomy (PN), had a success rate of 83% (289/350).
This newer method looked better, but the results changed when stone diameter was con-
sidered. For stones with diameters less than two centimeters, 93% (81/87) of cases of open
surgery were successful compared with only 87% (234/270) of cases of PN. For stones greater
than or equal to two centimeters, the success rates were 73% (192/263) and 69% (55/80)
for open surgery and PN, respectively. Open surgery is better for both stone sizes, but less
successful in total. In 1951, E. H. Simpson pointed out this apparent contradiction (known
as Simpsons Paradox) but the hazard still persists today. Explain how open surgery can be
better for both stone sizes but worse in total. [Montgomery and Runger, 2010, Q2-115]

Solution: First, let’s recall the total probability theorem:

P(A)=P(ANB)+ P(AN B°)
=P(A|B)P(B)+ P (A|B°) P(B°).

We can see that P(A) does not depend only on P (AN B) and P (A|B°). It also depends
on P(B) and P(B¢). In the extreme case, we may imagine the case with P(B) = 1 in which
P(A) = P(A|B). At another extreme, we may imagine the case with P(B) = 0 in which
P(A) = P(A|B°). Therefore, depending on the value of P(B), the value of P(A) can be
anywhere between P(A|B) and P(A|B°).

Now, let’s consider events Ay, By, As, and B,. Let P(A;|B;) = 0.93 and P(A;|Bf) =
0.73.  Therefore, P(A;) € [0.73,0.93]. On the other hand, let P(As|B;) = 0.87 and
P(Ay|BS) = 0.69. Therefore, P(Ay) € [0.69,0.87]. With small value of P(Bj), the value of
P(A;) can be 0.78 which is closer to its lower end of the bound. With large value of P(Bs,),
the value of P(As) can be 0.83 which is closer to its upper end of the bound. Therefore,
even though P(A;|B;) > P(A3|Bs) = 0.87 and P(A;|Bf) > P(As|BS), it is possible that
P(A;) < P(Ay).

In the context of the paradox under consideration, note that the success rate of PN with
small stones (87%) is higher than the success rate of OS with large stones (73%). Therefore,
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by having a lot of large stone cases to be tested under OS and also have a lot of small stone
cases to be tested under PN, we can create a situation where the overall success rate of PN
comes out to be better then the success rate of OS. This is exactly what happened in the
study as shown in Table 2.1}

Open surgery

sample sample conditional
success failure size percentage success rate
large stone 192 71 263 75% 73%
small stone 81 6 87 25% 93%
overall summary 273 77 350 100% 78%
PN
sample sample conditional
success failure size percentage success rate
large stone 55 25 80 23% 69%
small stone 234 36 270 77% 87%
overall summary 289 61 350 100% 83%

Table 2.1: Success rates in kidney stone removals.
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HW Solution 3 — Due: February 15

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)
(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. Suppose that for the general population, 1 in 5000 people carries the human
immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive (+) or
negative (-) response. Suppose the test gives the correct answer 99% of the time.

(a) What is P(—|H), the conditional probability that a person tests negative given that
the person does have the HIV virus?

(b) What is P(H|+), the conditional probability that a randomly chosen person has the
HIV virus given that the person tests positive?

Solution:

(a) Because the test is correct 99% of the time,

P(~|H) = P(+|H) = [0.01]

(b) Using Bayes’ formula, P(H|+) = %jj(h’)’ where P(+) can be evaluated by the total
probability formula:

P(+) = P(+|H)P(H) + P(+|H°)P(H®) = 0.99 x 0.0002 + 0.01 x 0.9998.
Plugging this back into the Bayes’ formula gives

0.99 x 0.0002
P(H|+) . ~[0.0194]

~0.99 x 0.0002 + 0.01 x 0.9998

Thus, even though the test is correct 99% of the time, the probability that a random
person who tests positive actually has HIV is less than 2%. The reason this probability
is so low is that the a priori probability that a person has HIV is very small.
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Problem 2.

(a) Suppose that P(A|B) = 1/3 and P(A|B¢) = 1/4. Find the range of the possible values
for P(A).

(b) Suppose that Cy, Cy, and Cj partition €. Furthermore, suppose we know that P(A|C}) =
1/3, P(A|Cy) = 1/4 and P(A|C3) = 1/5. Find the range of the possible values for
P(A).

Solution: First recall the total probability theorem: Suppose we have a collection of
events By, Bs, ..., B, which partitions 2. Then,

P(A)=P(ANB) +P(ANBy) +---P(ANB,)
— P(A|B)) P(By)+ P(A|By) P (By) +--- P (A|By) P (By)

(a) Note that B and B¢ partition ). So, we can apply the total probability theorem:
1 1
P(A)=P(A|B)P(B)+ P(A|B°)P(B°) = gP(B) —1—1(1 — P(B)).

You may check that, by varying the value of P(B) from 0 to 1, we can get the value
of P(A) to be any number in the range [, 3] . Technically, we can not use P(B) =0
because that would make P(A|B) not well-defined. Similarly, we can not use P(B) =

1 because that would mean P(B°¢) = 0 and hence make P(A|B°) not well-defined.

11
Therfore, the range of P(A) is (Z’ g) :

Note that larger value of P(A) is not possible because

P(A):%P(B)Jri(l—P(B)) < %p<3)+%(1—p<3)):1.

Similarly, smaller value of P(A) is not possible because

P(A):éP(B)+i(1—P(B)) > iP(B)+§(1—P(B)):—.

(b) Again, we apply the total probability theorem:
P(A)=P(A[C1) P(C1) + P(A|C2) P(Cy) + P(A|Cs) P (Cs)

— %P (Cy) + iP (Cy) + %P (Cs).
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Because C, Cy, and Cj partition €2, we know that P(Cy) + P(Cs) + P(Cs) = 1. Now,

1 1 1 1 1 1 1
P(A)ZgP(C1)+ZP(C2)+5P(C3)<gP(C1)+§P(C2)+§P(Cs)=§'
Similarly,
P(A) = 2P(C) + 2P () + 2P (Cy) > 2P (CY) + 2P (Co) + 2P (Cy) = +
T gt WU Tyt AT g A S gt A gt A2 g A T

Therefore, P(A) must be inside (3, 3).

11
You may check that any value of P(A) in the range (g, §) can be obtained by first
setting the value of P(Cy) to be close to 0 and varying the value of P(C}) from 0 to 1.

Problem 3. A Web ad can be designed from four different colors, three font types, five font
sizes, three images, and five text phrases. A specific design is randomly generated by the
Web server when you visit the site. Let A denote the event that the design color is red and
let B denote the event that the font size is not the smallest one. Calculate the following
probabilities.

(a) P(AUB)
(b) P(AU B°)
(¢) P(A°U B°)
[Montgomery and Runger, 2010, Q2-84]

Solution:

(a) First recall that P(AUB) = P(A)+ P(B) — P(ANC). For this problem, P(A) =1/4
(red is one of the four colors) and P(B) = 4/5 (four of the five fonts can be used).
Because the design is randomly generated, events A and B are independent. Hence,

I
P(ANB) =4 =1 = 0.2, Therefore, P(AUB) = 1 4 % — !

l:—:
§=| 55 =085

1
1

(b) P(A°UB°)=1-P(ANB)=1-02=[0.8]
(c) P(AUB®) =1—P(A°NB). Because A Il B, we also have A°_ll B. Hence, P(A°UB°) =
1-PA)PB)=1-35=2=

45 5
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Problem 4. Anne and Betty go fishing. Find the conditional probability that Anne catches
no fish given that at least one of them catches no fish. Assume they catch fish independently
and that each has probability 0 < p < 1 of catching no fish. [Gubner, 2006, Q2.62]

Solution: Let A be the event that Anne catches no fish and B be the event that Betty
catches no fish. From the question, we know that A and B are independent. The event “at
least one of the two women catches nothing” can be represented by A U B. So we have

P(AN(AUB)) P(A) P
PAlAVB) = P(AUB)  PA+PB) —-PA)P[B) 2p-p° |2—p]|

Problem 5. In this question, each experiment has equiprobable outcomes.
(a) Let Q ={1,2,3,4}, Ay ={1,2}, Ay = {1,3}, A3 = {2,3}.

(i) Determine whether P (A; N A;) = P (A4;) P (A;) for all i # j.
(11) Check whether P (Al N A2 N Ag) =P (Al) P (AQ) P (Ag)
(iii) Are A;, As, and Az independent?

(b) Let Q = {1,2,3,4,5,6}, A; = {1,2,3,4}, Ay = A3 = {4,5,6}.

(1) Check whether P (Al N A2 N Ag) =P <A1> P (AQ) P (Ag)
(ii) Check whether P (A; NA;) = P (A;) P (4;) for all i # j.
(iii) Are Ay, As, and Az independent?

Solution:

a) We have P(A; Land P(A;NA;) =2,
j 1

2
(i) P(A;NA;) = P(A;)P(A;) for any i # j.
(ii) Ay N Ay N A3 = (. Hence, P(A; N Ay N A;z) = 0, which is not the same as
P (A) P (4;) P (Ag).
(iii) No.

(b) We have P(A;) = % = % and P(Ay) = P(A3) = % =

1
5
(1) A1 N A2 N Ag == {4} Hence, P(Al N AQ N Ag) = %
P(A) P (Ay) P(Ag) = 211 = 1.
HGHCG, P (Al N A2 N A3) P (Al) P (Ag) P (A3)

|

3-4
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P(Ay N Ap) =p(4) = % # P(A1)P(Az)

P(AL N Az) = p(4) = § 7 P(A) P(As)

Hence, P (A;NA;) # P (A;) P(A;) for all i # j.
(iii) No.

Problem 6. A certain binary communication system has a bit-error rate of 0.1; i.e., in
transmitting a single bit, the probability of receiving the bit in error is 0.1. To transmit
messages, a three-bit repetition code is used. In other words, to send the message 1, 111 is
transmitted, and to send the message 0, 000 is transmitted. At the receiver, if two or more
1s are received, the decoder decides that message 1 was sent; otherwise, i.e., if two or more
zeros are received, it decides that message 0 was sent.

Assuming bit errors occur independently, find the probability that the decoder puts out
the wrong message.

[Gubner, 2006, Q2.62]

Solution: Let p = 0.1 be the bit error rate. Error event £ occurs if there are at least
two bit errors. Therefore

P(&) = <2>p2(1 —p)+ (2)103 = p*(3—2p).
When p = 0.1, P(€) ~[0.028].

Problem 7. In an experiment, A, B, C', and D are events with probabilities P(AU B) = g,

P(A) =2, P(CND) =g, and P(C) = 3. Furthermore, A and B are disjoint, while C' and
D are independent.

(a) Find
(i) P(ANB)
(ii) P(B)
(iii) P(AN B°)
(iv) P(AU B°)

(b) Are A and B independent?
(¢) Find
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(i) P(C°n D°)
(iv) P(CID)
(v) P(CUD,)
(vi) P(C'U D"

(d) Are C and D¢ independent?

Solution:

(a)

(i) Because A L B, we have AN B = () and hence P(AN B) =|0]
(ii) Recall that P(AU B) = P(A) + P(B) — P(AN B). Hence, P(B) = P(AUB) —

P(A)+ P(ANB) =5/8 — 3/8+ 0 = 2/8 = bozed1 /4.
(ili) P(AN B°) = P(A) — P(ANB) = P(A) =[3/8].

(iv) Start with P(AU B¢) = 1 — P(A°N B). Now, P(A°N B) = P(B) — P(AN B)

P(B) = 1/4. Hence, P(AUB®) =1 —1/4 =|[3/4]

(b) Events A and B are not independent because P(AN B) # P(A)P(B).

(c)

(i) Because C' 1D, we have P(C N D) = P(C)P(D). Hence, P(D) =

1/3
s =|2/3]

(i) P(CND°)=PC)—P(CND)=1/2—-1/3=|1/6|
Alternatively, because C' 1D, we know that C _ D°.
POP(D) =3 (1-2) =4t =1

23 7 6

Hence, P(C N D)

(iii) First, we find P(C U D) = P(C) 4+ P(D) — P(CN D) =1/2+2/3—1/3 = 5/6.

Hence, P(C°ND°)=1—-P(CUD)=1-5/6=|1/6|

Alternatively, because C' Il D, we know that C°_ D°. Hence, P(C® N D°)

PCYP(DY) = (1-4) (1-3) =31 = 1.

— 237 6

(iv) Because C' L D, we have P(C|D) = P(C) =|1/2|.

(v) In part (iii), we already found P(C U D) = P(C)+ P(D) — P(CND) =1/2+

2/3-1/3=[5/6]

3-6
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(vi) P(CUD?) =1—-P(C°ND)=1-P(C°)P(D)=1-12=|2/3| Note that we
use the fact that C°_1l D to get the second equality.
Alternatively, P(C'U D¢) = P(C) + P(D¢) — P(C N DY). From (i), we have
P(D) =2/3. Hence, P(D¢) = 1—2/3 = 1/3. From (ii), we have P(CND®) = 1/6.
Therefore, P(CU D) =1/2+1/3—-1/6 =2/3.

(d) Yes. We know that if C' Il D, then C' 1l D*.

Problem 8. Consider the sample space Q@ = {—2,—1,0,1,2,3,4}. For an event A C €,
suppose that P(A) = |A|/|2|. Define the random variable X (w) = w?. Find the probability
mass function of X.

Solution: Because |2 = 7, we have p(w) = 1/7. The random variable maps the
outcomes —2, —1,0,1,2,3,4 to numbers 4,1,0,1,4,9, 16, respectively. Therefore,

px (0) = P({0}) = =,
)

2
px() = PU-11}) = =
2
px (@) = P({-2,2D = 2,
1
px (9) = P({3}) = = and
1
(16) = P({4}) = =.
The pmf can then be expressed as
i 2=0,916
|y
px () = =, v=1,4
0, otherwise.

Problem 9. Suppose X is a random variable whose pmf at x = 0,1,2,3,4 is given by

px(z) = %
Remark: Note that the statement above does not specify the value of the px(x) at the

value of = that is not 0,1,2,3, or 4.

(a) What is px(5)?

(b) Determine the following probabilities:

(i) P[X =4
1
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(iii) P[2 < X < 4]
(iv) P[X > —10]

Solution:

(a)

First, we calculate
4 4

I e

=0 =0

Therefore, there can’t be any other x with px(x) > 0. At x = 5, we then conclude

that px(5) = The sam reasoning also implies that px(z) = 0 at any « that is not
0,1,2,3, or 4.

Recall that, for discrete random variable X, the probability
P [some condition(s) on X]

can be calculated by adding px(x) for all z in the support of X that satisfies the given
condition(s).

. 9
() PIX =4 = px(4) = 22 = | —.
. 4
(ii) P[X <1] =px(0) +px(1) = 2L + 20 = L+ 2 = 5%
12
() P[2< X <4]=px(2) +px(3) = 22 4 208 = 4 1= | 2

(iv) P[X > —10] =|1] because all the x in the support of X satisfies x > —10.
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Problem 1. The random variable V' has pmf

(v) = cv?, v=1,2,34,
Py v) = 0,  otherwise.

(a) Find the value of the constant c.
(b) Find P[V € {v?:u=1,2,3,...}].

¢) Find the probability that V' is an even number.

)
)
(c)
(d) Find P[V > 2.
e) Sketch py (v).
)

(
(f) Sketch Fy (v).

Solution: [Y&G, Q2.2.3]

(a) We choose ¢ so that the pmf sums to one:

S pv(v) =c(1® + 22 + 3 4+ 4%) =30c = 1.

Hence, ¢ =[1/30|.

(b) P[Ve{u*:u=1,23,..}=pr(1)+pr(4) =c(1*> +4%) =

(c) P[V even| = py(2) + py(4) = c¢(2* + 4%) = 20/30 =|2/3|.

(d) PV >2] =py(3) + py(4) = (32 +42) = 25/30 = 5/6 |

(e) Sketch of py (v):
(f) Sketch of Fy (v):

17/30)




IES 302 HW Solution 4 — Not Due 2011/2
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Problem 2. An optical inspection system is to distinguish among different part types.
The probability of a correct classification of any part is 0.98. Suppose that three parts are
inspected and that the classifications are independent.

(a) Let the random variable X denote the number of parts that are correctly classified.
Determine the probability mass function of X. [Montgomery and Runger, 2010, Q3-20]

(b) Let the random variable Y denote the number of parts that are incorrectly classified.
Determine the probability mass function of Y.

Solution:

(a) X is a binomial random variable with n = 3 and p = 0.98. Hence,

(%)0.987(0.02)>, x € {0,1,2,3},
px (z) = { 0, otherwise (4.1)

In particular, px(0) = 8 x 107%, px(1) = 0.001176, px(2) = 0.057624, and px(3) =
0.941192. Note that in MATLAB, these probabilities can be calculated by evaluating
binopdf (0:3,3,0.98).

4-2
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(b) Y is a binomial random variable with n = 3 and p = 0.02. Hence,

(%)0.02¢(0.98)>7¥, y € {0,1,2,3}
— Y ) ? ) Y 7
pv (v) { 0, otherwise

In particular, py(0) = 0.941192, py (1) = 0.057624, py(2) = 0.001176, and py(3) =
8 x 1075, Note that in MATLAB, these probabilities can be calculated by evaluating
binopdf (0:3,3,0.02).

Alternatively, note that there are three parts. If X of them are classified correctly,
then the number of incorrectly classified parts is n — X, which is what we defined as Y.
Therefore, Y =3 — X. Hence, py(y) = P[Y =y|=PB3—-X=y|=P[X =3—y| =
px(3—y).

(4.2)

Problem 3. The thickness of the wood paneling (in inches) that a customer orders is a
random variable with the following cdf:

0, x<§
02, <<l
— »og = 1
Fx(@) =19 09, 1<, <!
1 ng

Determine the following probabilities:
(a (X <1/18]
(b (X < 1/4]

(d

) P
) P

(c) P[X <5/16]
) P[X > 1/4]
) P

() PIX <172
[Montgomery and Runger, 2010, Q3-42]
Solution:
[X < 1/18] = Fx(1/18) = 0 because 5 < z.

(a
(b

) P

) P[X <1/4] = Fx(1/4) = 0.9

(¢) P[X <5/16] = Fx(5/16) = 0.9 because ; < 3 < 5.
) P

(d) P[X>1/4=1-P[X <1/4=1-Fx(1/4) =1-09=0.1.

4-3
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(e) P[X <1/2] = Fx(1/2) =1 because § > 2.
Alternatively, we can also derive the pmf first and then calculate the probabilities.

Problem 4. Plot the Poisson pmf for a = 10, 30, and 50.
Solution: See Figure 4.1
0.14f
0.12f
0.10F
0.08F
0.06F
0.04F

O'OZJ‘ lﬁﬂ e W mﬁ% resmnt

0
0 10 20 30 40 50 60 70 80

Figure 4.1: The Poisson pmf for « = 10, 30, and 50 from left to right, respectively. [Gubner,
2006, Figure 2.5]

Problem 5. Let X ~ P(a).
(a) Evaluate P[X > 1]. Your answer should be in terms of a.

(b) Compute the numerical value of P[X > 1] when a = 1.

Solution:

() PIX>1=1-P[X<1=1-(P[X=0+P[X=1)=[1-e(1+a)|

(b) [0.264]
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Problem 6. When n is large, binomial distribution Binomial(n,p) becomes difficult to
compute directly because of the need to calculate factorial terms. In this question, we
will consider an approximation when p is close to 0. In such case, the binomial can be
approximated by the Poisson distribution with parameter a = np.

More specifically, suppose X,, has a binomial distribution with parameters n and p,. If
pn — 0 and np, — a as n — oo, then

P[Xn = k] — B_QH.

(a) Let X ~ Binomial(12,1/36). (For example, roll two dice 12 times and let X be the
number of times a double 6 appears.) Evaluate px(z) for z =0, 1, 2.

(b) Compare your answers in the previous part with the Poisson approximation.

(¢) Compare the plot of py(x) and P(np).

Solution:
(a) 0.7132, 0.2445, 0.0384.
(b) 0.7165, 0.2388, 0.0398.

(¢) See Figure [4.2]

0.8 T T T T T : :
—© Binomial pmf
0 —* Poisson pmf |
0.6f b
0.5f b
0.4f b
0.3f b
0.2 q
0.1f b
0 ? @ L >—0—0—0@
0 1 2 3 4 5 6 7 8
X

Figure 4.2: Poisson Approximation

4-5
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Problem 7. In one of the New York state lottery games, a number is chosen at random
between 0 and 999. Suppose you play this game 250 times. Use the Poisson approximation
to estimate the probability that you will never win and compare this with the exact answer.

Solution: [Durrett, 2009, Q2.41] Let W be the number of wins. Then, W ~ Binomial(250, p)
where p = 1/1000. Hence,

250
PW =0] = ( 0 )p°(1 —p)*° = 0.7787.

If we approximate W by A ~ P(«). Then we need to set

250 1

C=MP = 000 T 4

In which case,
PA=0]=e "% = ¢~ 0.7788
which is very close to the answer from direct calculation.

Problem 8. Suppose X is a random variable whose pmf at x = 0,1,2,3,4 is given by

px(x) = 2+ Determine its expected value and variance. [Montgomery and Runger, 2010,
Q3-51]
Solution:
4
20 +1 3 ) 7 9
EX = = 1 2 4| —
Z‘”pX ;x 5 VT (25)+ (25)+3<25>+ (25>
o _u_
25 5)
- L2+ 1 3 5 7 9
E X2 — 2 — 2 =0 12 22 32 42 e
X ;x”(z) 2" o5 )T\ T \e) T\
230 46
— =92
25 )

Var X = E [X?] — (EX)* =9.2—28" =

Problem 9. An article in Information Security Technical Report [“Malicious Software—
Past, Present and Future” (2004, Vol. 9, pp. 618)] provided the data (shown in Figure
on the top ten malicious software instances for 2002. The clear leader in the number of
registered incidences for the year 2002 was the Internet worm “Klez”. This virus was first

4-6
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Place Name % Instances
1 I-Worm.Klez 61.22%
2 I-Worm.Lentin 20.52%
3 I-Worm. Tanatos 2.09%
4 I-Worm.Badtransl| 1.31%
5 Macro.Word97.Thus 1.19%
6 I-Worm.Hybris 0.60%
7 I-Worm.Bridex 0.32%
8 I-Worm.Magistr 0.30%
9 Win95.CIH 0.27%

10 I-Worm.Sircam 0.24%

Figure 4.3: The 10 most widespread malicious programs for 2002 (Source—Kaspersky Labs).

detected on 26 October 2001, and it has held the top spot among malicious software for the
longest period in the history of virology.

Suppose that 20 malicious software instances are reported. Assume that the malicious
sources can be assumed to be inde- pendent.

(a) What is the probability that at least one instance is “Klez”?
(b) What is the probability that three or more instances are “Klez”?

(c) What are the expected value and standard deviation of the number of “Klez” instances
among the 20 reported?

Solution: Let N be the number of instances (among the 20) that are “Klez”. Then,
N ~binomial(n, p) where n = 20 and p = 0.6122.

(a) P[N>1]=1-P[N <1]=1-P[N =0] = 1—py(0) = 1—(})) x0.6122°x0.3878% ~
0.9999999941 =~ 1.

b
" PIN>3=1-P[N<3]=1—(P[N=0]+P[N=1]+P[N =2

2

20 _

1-> (k ) (0.6122)"(0.3878)* % ~ 0.999997
k=0

(c) EN = np =20 x 0.6122 = 12.244.
on =V Var N = y/np(1 — p) = v/20 x 0.6122 x 0.3878 ~ 2.179.

4-7



TES 302 HW Solution 4 — Not Due

2011/2

Problem 10. The random variable V' has pmf

1
) mte ve{-2,2,3}
pv (v) = { 0, otherwise.

(a) Find the value of the constant c.
(b) Find P[V > 3.
(c¢) Find P[V < 3].
(d) Find P[V? > 1].
(e) Let W =V?—V + 1. Find the pmf of W.
(f) Find EV
(g) Find E [V?]
(h) Find VarV
(i) Find oy

)

(j) Find EW

Solution:

(a) The pmf must sum to 1. Hence,
1
(=2)? (2)? (3)?

The value of ¢ must be

C_%@_l_l_l)_ﬁimam%

Note that this gives
41

13
pv(—2)=py(2) =—~038 and py(3) = i 0.241.

~ 108

(b) P[V > 3] =[0] because all elements in the support of V are < 3.

(c) P[V<3l=1-py(3) =5 ~0.759.

1 1
5 tCct 5 tct+ o5 t+ec=1
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(d) P[V? > 1] =|1|because the square of any element in the support of V is > 1.

(e) W=V?-V+1. So, when V = —2,2 3, we have W = 7,3, 7, respectively. Hence, W
takes only two values, 7 and 3. the corresponding probabilities are

PIW =7 = py(=2) + pv(3) = - ~ 0.62.

~ 108
and
PIW = 3] = pu(2) = - ~0.38
TS T s T
Hence, the pmf of W is given by
-%,w:& 0.38, w =3,
pw (w) = 160—8, w=7, 2 0.62, w=71,
0, otherwise. 0, otherwise.

(f) BV = 1 ~0.7222
(g) EVZ =21 ~ 52037

(h) VarV = EV? — (EV)? = LT ~ 4.682.

324
(i) oy = VVarV ~ 2.1638
(j) EW = 5.4815
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